光谱型子空间聚类算法成功的关键点是寻求重建系数矩阵,这些矩阵可以忠实地揭示数据集的子空间结构。理想的重建系数矩阵应该具有两个属性:1)它是块对角线,每个块指示一个子空间; 2)每个块完全连接。尽管已经提出了各种光谱类型子空间聚类算法,但这些算法构建的重建系数矩阵中仍然存在一些缺陷。我们发现,归一化成员矩阵自然满足上述两个条件。因此,在本文中,我们设计了一种基本表示(IDR)算法来追求近似归一化成员矩阵的重建系数矩阵。 IDR设计了重建系数矩阵的新的IDEMTOTENT约束。通过将双随机约束结合在一起,可以直接实现与归一化构件矩阵封闭的系数矩阵。我们提出了用于解决IDR问题的优化算法,并分析其计算负担和收敛性。 IDR和相关算法之间的比较显示IDR的优势。对合成和现实世界数据集进行的大量实验证明,IDR是一种有效而有效的子空间聚类算法。
translated by 谷歌翻译
通用的对抗扰动(UAP)是不可察觉的,图像敏捷的矢量,引起深度神经网络(DNNS),从而从具有很高概率的数据分布中误分类输入。现有方法不会为转换创造强大的UAPS,从而将其适用性限制为现实世界攻击。在这项工作中,我们介绍了一个新的概念和强大的普遍对抗性扰动的表述。基于我们的公式,我们构建了一种小说,迭代算法,该算法利用了概率的鲁棒性界限来生成UAPS,以与通过组成任意亚差异性转换功能生成的转换产生鲁棒。我们对流行的CIFAR-10和ILSVRC 2012数据集进行了广泛的评估,该数据集测量了人类解剖性语义转换(例如旋转,对比变化等)在现实世界中常见的鲁棒性。我们的结果表明,我们生成的UAP比基线的UAP更强大。
translated by 谷歌翻译
兴趣点检测是计算机视觉和图像处理中最根本,最关键的问题之一。在本文中,我们对图像特征信息(IFI)提取技术进行了全面综述,以进行利益点检测。为了系统地介绍现有的兴趣点检测方法如何从输入图像中提取IFI,我们提出了IFI提取技术的分类学检测。根据该分类法,我们讨论了不同类型的IFI提取技术以进行兴趣点检测。此外,我们确定了与现有的IFI提取技术有关的主要未解决的问题,以及以前尚未讨论过的任何兴趣点检测方法。提供了现有的流行数据集和评估标准,并评估和讨论了18种最先进方法的性能。此外,还详细阐述了有关IFI提取技术的未来研究方向。
translated by 谷歌翻译
With the increased usage of AI accelerators on mobile and edge devices, on-device machine learning (ML) is gaining popularity. Thousands of proprietary ML models are being deployed today on billions of untrusted devices. This raises serious security concerns about model privacy. However, protecting model privacy without losing access to the untrusted AI accelerators is a challenging problem. In this paper, we present a novel on-device model inference system, ShadowNet. ShadowNet protects the model privacy with Trusted Execution Environment (TEE) while securely outsourcing the heavy linear layers of the model to the untrusted hardware accelerators. ShadowNet achieves this by transforming the weights of the linear layers before outsourcing them and restoring the results inside the TEE. The non-linear layers are also kept secure inside the TEE. ShadowNet's design ensures efficient transformation of the weights and the subsequent restoration of the results. We build a ShadowNet prototype based on TensorFlow Lite and evaluate it on five popular CNNs, namely, MobileNet, ResNet-44, MiniVGG, ResNet-404, and YOLOv4-tiny. Our evaluation shows that ShadowNet achieves strong security guarantees with reasonable performance, offering a practical solution for secure on-device model inference.
translated by 谷歌翻译
Bootstrap aggregating (Bagging) and boosting are two popular ensemble learning approaches, which combine multiple base learners to generate a composite model for more accurate and more reliable performance. They have been widely used in biology, engineering, healthcare, etc. This paper proposes BoostForest, which is an ensemble learning approach using BoostTree as base learners and can be used for both classification and regression. BoostTree constructs a tree model by gradient boosting. It increases the randomness (diversity) by drawing the cut-points randomly at node splitting. BoostForest further increases the randomness by bootstrapping the training data in constructing different BoostTrees. BoostForest generally outperformed four classical ensemble learning approaches (Random Forest, Extra-Trees, XGBoost and LightGBM) on 35 classification and regression datasets. Remarkably, BoostForest tunes its parameters by simply sampling them randomly from a parameter pool, which can be easily specified, and its ensemble learning framework can also be used to combine many other base learners.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
To generate high quality rendering images for real time applications, it is often to trace only a few samples-per-pixel (spp) at a lower resolution and then supersample to the high resolution. Based on the observation that the rendered pixels at a low resolution are typically highly aliased, we present a novel method for neural supersampling based on ray tracing 1/4-spp samples at the high resolution. Our key insight is that the ray-traced samples at the target resolution are accurate and reliable, which makes the supersampling an interpolation problem. We present a mask-reinforced neural network to reconstruct and interpolate high-quality image sequences. First, a novel temporal accumulation network is introduced to compute the correlation between current and previous features to significantly improve their temporal stability. Then a reconstruct network based on a multi-scale U-Net with skip connections is adopted for reconstruction and generation of the desired high-resolution image. Experimental results and comparisons have shown that our proposed method can generate higher quality results of supersampling, without increasing the total number of ray-tracing samples, over current state-of-the-art methods.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Representing and synthesizing novel views in real-world dynamic scenes from casual monocular videos is a long-standing problem. Existing solutions typically approach dynamic scenes by applying geometry techniques or utilizing temporal information between several adjacent frames without considering the underlying background distribution in the entire scene or the transmittance over the ray dimension, limiting their performance on static and occlusion areas. Our approach $\textbf{D}$istribution-$\textbf{D}$riven neural radiance fields offers high-quality view synthesis and a 3D solution to $\textbf{D}$etach the background from the entire $\textbf{D}$ynamic scene, which is called $\text{D}^4$NeRF. Specifically, it employs a neural representation to capture the scene distribution in the static background and a 6D-input NeRF to represent dynamic objects, respectively. Each ray sample is given an additional occlusion weight to indicate the transmittance lying in the static and dynamic components. We evaluate $\text{D}^4$NeRF on public dynamic scenes and our urban driving scenes acquired from an autonomous-driving dataset. Extensive experiments demonstrate that our approach outperforms previous methods in rendering texture details and motion areas while also producing a clean static background. Our code will be released at https://github.com/Luciferbobo/D4NeRF.
translated by 谷歌翻译
Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译